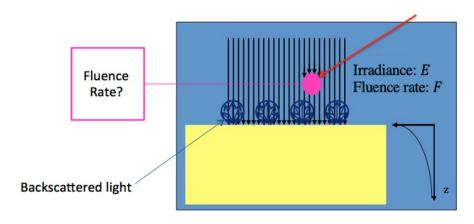
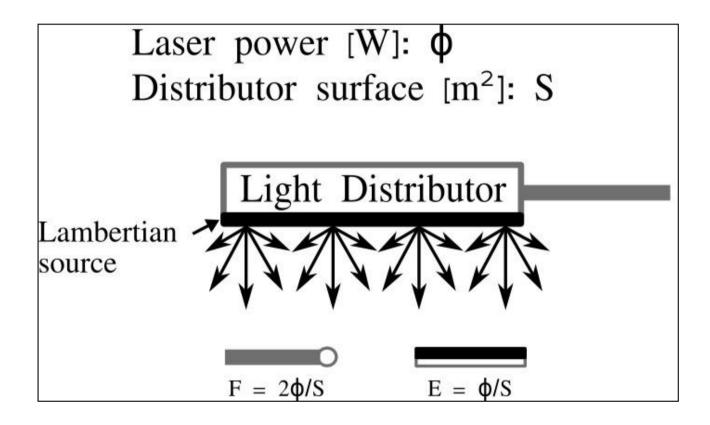
Exercise on light scattering

Exercise for week 8


A thick (thickness >> $\mu_{\rm eff}^{-1}$) absorbing and scattering sample, indicated in yellow below, is illuminated at 660 nm by a collimated and 'broad' (spot diameter >> $\mu_{\rm eff}^{-1}$) light beam directed perpendicularly to the interface (let's consider a matching of the refractive indexes) with an unknown irradiance. A «small» and calibrated isotropic detector, which measures the fluence rate, is placed in the beam just above the solution (Neglect the shadow produced by the detector). A fraction of the light is backscattered and re-emitted by the tissue surface with a Lambertian profile.

The optical properties of the tissue at 660 nm are: $\mu_a = 0.001$ mm⁻¹, $\mu_s = 10$ mm⁻¹, g = 0.9, k = 7.95, R = 93 %.


Q1: Knowing that the fluence rate $(F) = 250 \text{ mW/cm}^2$ at a depth of 3 mm, what is the fluence rate measured by the detector outside the tissue in the light beam.

Q2: What is the depth inside the tissue at which the fluence rate F equals the irradiance E?

Q3: Discuss the evolution of the reflection coefficient R with changes of μ_a , μ_s ' and n_2 .

Hint!

